Dankoff Solar Force Piston Pump draws water from a shallow well, spring, pond, river or tank. It can push water uphill and over long distances for home, village, irrigation or livestock uses. It can use power directly from a photovoltaic array or from storage batteries to fill a storage tank or to pressurize water.

Ultra-efficient
Uses less power than any other pump in its range, starts pumping in low light conditions

Economical
Reduces power system cost by 25-75% compared to centrifugal or AC pumps

Solar-Direct Application
Starts pumping in low light conditions

Pressurizing Application
DC version is most efficient. AC version uses a low-surge permanent magnet motor that greatly reduces starting surge, inverter size, and wire size requirements (when compared to conventional AC pumps).

Rugged and Reliable
Proven design with a 20-year life expectancy, simple to maintain with common tools (5-10 yr. maintenance interval)

Good Tolerance for Dirt and Dry Run

Mechanical Drive
Allows engine or hand-lever backup

Illustrated Instruction Manual
Makes it easy for anyone to install and service, with no previous experience

Voltages Available
- 12, 24, 48 V DC

 Note: PV-Direct full working voltage is typically 20% higher than nominal (example: 29 V for a 24 V system)
- 115 V or 230 V AC, 50-60 Hz

Warranty
2 years against defects in materials and workmanship

Construction
- Cast iron body
- Brass cylinder and valve seats
- Leather cup piston seals
- Neoprene valve seals
- Oil-bath crankcase
- Gear (timing) belt drive on PV models
- Standard V-belt on B models
- Pressure relief valve
- Permanent Magnet DC Motor
- Surge tank included (not in photo)

Suction Capacity
25 vertical feet (7.6 m) at sea level. Subtract 1 foot for every 1000 ft. elevation (1 m for every 1,000 m). Suction capacity may be further limited by intake pipe friction. Intake piping should be minimum 1” (3010, 3020 models) or minimum 1 1/4” (3040). For best reliability, place the pump as close to the water source as possible.

Fittings
- Intake: 1 1/4” female pipe thread
- Outlet: 1” female pipe thread

Dimensions
- 22 x 13 x 16” high (56 x 33 x 41 cm)
- With Surge Tank (not shown in photo), total height 26” (60 cm)
- Weight, max. 80 lbs (36 kg)

 Shipped in 2 or 3 boxes
System Requirements

- Solar-Direct Systems: Chart indicates power (w) required at the pump. The rated power of the PV array must exceed this number by 20 % or more. A pump controller (linear current booster) is required for the pump to start and run in varying light conditions. A solar tracker may be used to increase daily yield (40-55 % in summer).
- Pressurizing Systems: battery power system, pressure switch, and pressure tank of minimum 60 gallon (230 l) size (captive-air tank, available locally)

Reading the Chart

Total Lift = vertical Distance from surface of the water source to the pipe outlet or top of storage tank

GPM = U.S. Gallons Per Minute

LPD = Liters Per Minute

Model Designation:

V=voltage, B=battery model, PV=PV array-direct model

<table>
<thead>
<tr>
<th>Feet</th>
<th>Meters</th>
<th>PSI</th>
<th>KG/sq. cm</th>
<th>GPM</th>
<th>LPM</th>
<th>Watts</th>
<th>GPM</th>
<th>LPM</th>
<th>Watts</th>
<th>GPM</th>
<th>LPM</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6.1</td>
<td>8.7</td>
<td>0.61</td>
<td>5.9</td>
<td>22.3</td>
<td>77</td>
<td>5.2</td>
<td>19.7</td>
<td>110</td>
<td>9.3</td>
<td>35.2</td>
<td>168</td>
</tr>
<tr>
<td>40</td>
<td>12.2</td>
<td>17.4</td>
<td>1.22</td>
<td>5.6</td>
<td>21.3</td>
<td>104</td>
<td>5.2</td>
<td>19.7</td>
<td>132</td>
<td>9.3</td>
<td>35.2</td>
<td>207</td>
</tr>
<tr>
<td>60</td>
<td>18.3</td>
<td>26</td>
<td>1.83</td>
<td>5.3</td>
<td>20.2</td>
<td>123</td>
<td>5.1</td>
<td>19.3</td>
<td>154</td>
<td>9.2</td>
<td>34.9</td>
<td>252</td>
</tr>
<tr>
<td>80</td>
<td>24.4</td>
<td>35</td>
<td>2.44</td>
<td>5</td>
<td>19.7</td>
<td>152</td>
<td>5.1</td>
<td>19.3</td>
<td>162</td>
<td>9.2</td>
<td>34.9</td>
<td>286</td>
</tr>
<tr>
<td>100</td>
<td>30.5</td>
<td>43</td>
<td>3.05</td>
<td>5.1</td>
<td>19.2</td>
<td>171</td>
<td>5</td>
<td>18.9</td>
<td>202</td>
<td>9.1</td>
<td>34.5</td>
<td>322</td>
</tr>
<tr>
<td>120</td>
<td>36.6</td>
<td>52</td>
<td>3.66</td>
<td>4.9</td>
<td>19.2</td>
<td>200</td>
<td>5</td>
<td>18.9</td>
<td>224</td>
<td>9.1</td>
<td>34.5</td>
<td>364</td>
</tr>
<tr>
<td>140</td>
<td>42.7</td>
<td>60</td>
<td>4.27</td>
<td>4.9</td>
<td>18.7</td>
<td>226</td>
<td>5</td>
<td>18.9</td>
<td>252</td>
<td>9.1</td>
<td>34.5</td>
<td>403</td>
</tr>
<tr>
<td>160</td>
<td>48.8</td>
<td>70</td>
<td>4.88</td>
<td>4.9</td>
<td>18.6</td>
<td>269</td>
<td>4.9</td>
<td>18.6</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>54.9</td>
<td>78</td>
<td>5.49</td>
<td>4.9</td>
<td>18.6</td>
<td>280</td>
<td>4.9</td>
<td>18.6</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>61</td>
<td>87</td>
<td>6.1</td>
<td>4.8</td>
<td>18.2</td>
<td>308</td>
<td>4.8</td>
<td>18.2</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>67.1</td>
<td>96</td>
<td>6.71</td>
<td>4.7</td>
<td>17.8</td>
<td>314</td>
<td>4.7</td>
<td>17.8</td>
<td>314</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifications may vary ± 10%

PV Models are measured at 14, 28, or 56V (array direct)